

STABILITY INVESTIGATION OF GAMMA-RAY IRRADIATED ANTIBIOTICS

1

Adriana SMARANDACHE 1,*, Ralf Möller2, Mihail Lucian PASCU1, 3

¹ National Institute for Laser Plasma and Radiation Physics, Str. Atomistilor 409, 077125 Magurele, Romania, e-mail: adriana.smarandache@inflpr.ro

² German Aerospace Center (DLR e.V.), Linder Hoehe, 51147 Cologne (Köln), Germania

³ Faculty of Physics, University of Bucharest, Str. Atomistilor 405, 077125 Magurele, Romania

AIMS

- Evaluation of gamma radiation influence on selected antibiotics;
- Long time stability of medicines subsequent to their gamma irradiation exposure;
- Necessity: safety and effective multifunctional medicines for use during long-duration spaceflights.

MATERIALS

3

• Nalidixic acid (NAL); C₁₂H₁₂N₂O₃

M=232.24 g/mol

White powder;

Colorless solution

(in deionized water);

Rifampicin (RIF); $C_{43}H_{58}N_4O_{12}$

M=823 g/mol

Red powder/solution

(in 50:50 deionized water /EtOH)

• Spectinomycin (SPEC); C₁₄H₂₄N₂O₇

M=495.35 g/mol

Colorless solution

(in deionized water);

METHODS

4

• Gamma Irradiation (BGS, Germany): 60Co source

Antibiotics – solid samples irradiation doses:

6-204 kGy

- Spectral measurements (SOL-INFLPR, Romania):
 - UV-VIS Absorption (Lambda 950, Perkin Elmer, U.S.A., rez. ≤0.05 nm)
 - ➤ FTIR Absorption (Nicolet IS50, Thermo Scientific, U.S.A., 4000-400 cm⁻¹, resolution 4 cm⁻¹, Omnic 9 Standard)

UV-VIS STABILITY

NAL

- Degradation of the irradiated solutions; exception the 6 kGy gamma-ray exposed sample;
- Degradation of the unirradiated solutions;
- Red shift along with hyperchromic effect in the characteristic absorption spectra of long term stored NAL unirradiated;
- Red shift along with hypochromic effect in the characteristic absorption spectra of long term stored NAL gamma irradiated.

UV-VIS STABILITY

SPEC

- Degradation of the unirradiated solutions;
- Similar behavior for the sample exposed at 6 kGy dose;
- Radiolytic degradation and appearance of secondary products due to the increase of the irradiation dose;
- Strong degradation of long term stored unirradiated samples;
- Red shift along with hypochromic effect shown by the absorption spectra of long term stored SPEC gamma irradiated.

UV-VIS STABILITY

RIF

- Instability of the unirradiated solution kept at room temperature in the dark in the BGS irradiation facility lab;
- Increase of the absorbance intensity along with the irradiation dose;
- Bathochromic shift complemented with a hyperchromic effect of absorption spectra after long term storing.

NAL

Long term vibrational changes of NAL molecules' carboxyl bonds

Nr crt	v [cm ⁻¹]	Assign.	Comments
1	1710-1720	ν(C=O)	Molecular changes of 6/24 kGy irradiated samplesMolecular changes of the sample kept at BGS irradiation facility
2	3440	ν(O-H)	Molecular changes of the sample kept at BGS irradiation facility

- Radiolytic degradation and appearance of byproducts produced by the increase in the irradiation dose;
- Long term molecular changes of all samples

Nr crt	ν [cm ⁻¹]	Assign.	Comments
1	418-440	τ(Ο-Η)+ν (Ο-Η)	Vibrational changes to all the irradiated samples
2	645-670	$v_{\rm bend}(\text{C-H}) + \tau (\text{O-H})$	Vibrational changes to all the irradiated samples
3	3020-3100	ν (O-H)	Vibrational changes of the 48 kGy irradiated sample
4	3200-3450	ν (O-H)	Molecular changes of the sample kept at BGS irradiation facility Long term molecular changes of all samples

- Vibrational changes of the RIF molecules
- Long term vibrational changes of all samples

RIF

Nr crt	v [cm ⁻¹]	Assign.	Comments
1	492	τ(О-Н)	Vibrational changes of the 6/24 kGy irradiated samples
2	626-660	v _{bend} (C-O-H)	Vibrational changes of the 6/24 kGy irradiated samples Long term vibrational changes of all samples
3	1078	v _{asym} (C-O)	Vibrational changes of the 24 kGy irradiated sample
4	1330-1340	$v_{\rm bend}({ m CH}_3) + v({ m O-H})$	Vibrational changes of the 6/24 kGy irradiated samples
5	1559	v(C=N)+ δ(N-H) +v(C=C) of naphthalene core ring	Vibrational changes of the 102 kGy irradiated sample Long term vibrational changes of the gamma irradiated samples
6	1726	ν(C=O)	Vibrational changes of the 6/24 kGy irradiated samples
7	3480	Intermolecular v(O-H)	Vibrational changes of the 6/24 kGy irradiated samples

CONCLUSIONS & OUTLOOKS

- Investigating the long-term stability of medicines is useful in providing a set of basic multifunctional medicines to be used during long-term spaceflights;
- All the three antibiotics show variations in absorption intensity in UV-Vis spectral range, long term stability included;
- Molecular modifications of control samples (NAL and SPEC) stored in the BGS irradiation facility laboratory;
- All three antibiotics are particularly sensitive to irradiation doses up to 24 kGy;
- Occurrence of SPEC byproducts that absorb at 274 nm; their concentration in irradiated samples increases with the irradiation dose;
- Long term degradation of NAL due to protonation of carboxylic groups;
- The effect of hydroxyl groups on long time stability of SPEC is evidenced by both UV-Vis and FTIR spectroscopy.
- Further investigation on secondary products identification, as well as their antibacterial/antifungal/antiviral activity in spaceflight environment are necessary.

13

This research was funded by grants of the MCID and UEFISCDI, specifically projects PN-III-P2-2.1-PED-2019-4771, PN-III-P2-2.1-PED-2019-5283, and Program-Core research-development, ctr. no. 16N/08.02.2019.