Beam modeling of Elekta Agility MLC for Monte Carlo and Collapsed Cone Convolution computational algorithms in Monaco treatment planning system.

Virag Vasile Petru1,2, Ghemis Diana Maria1,2

1West University of Timisoara, Faculty of Physics, Timisoara, Romania

2MedEuropa, Oncology and Radiotherapy Center, Oradea, Romania
Introduction

- After the commissioning process of the LINAC, beam modeling is the next step before clinical use.
- Monaco treatment planning system (TPS) uses two computational algorithms: Collapsed Cone Convolution and photon Monte Carlo.
- 8 beam matched linear accelerator from 4 different clinics were involved in this study.
- For 3D treatment planning, 17 asymmetrical and irregular fields were measured with Farmer, Semiflex and PinPoint ionization chambers, depending on the dimensions of the field.
- The fields were calculated in the TPS and the maximum tolerance admitted is +/- 3% from the TPS value.
- For IMRT and VMAT verification, 8 static and intensity modulated fields were used with the purpose to verify multileaf collimator parameters: leaf offset and leaf transmission. All fields were measured using a detector array with 1500 detectors and Octavius 4D system.
• Collapsed Cone Convolution algorithm can be used only for 3D planning. All LINACS involved are able to deliver photon beams of 6MV and 10MV energy.

• 100MU were delivered for each field, equivalent to 1Gy at SSD 90cm and 10cm.

• Both energies show good agreement with TPS system, with a maximum deviation of ±1.3%, for Asy04 and Asy07 fields due to beam shape situated at leaf limits, for both 6MV and 10MV energy.
• In the case of Wedge filter, the only computational algorithm available is Collapsed Cone Convolution.
• 9 irregular fields were measured. 100MU were delivered for each field, equivalent to 1Gy at SSD 90cm and 10cm.
• The maximum deviation from reference can be seen for 6MV photon beams, +1.97%. For 10MV photons beams, the maximum deviation is +1.83%.
• Both energies shows good agreement with TPS system below the maximum admitted of ±3%.
• Photon Monte Carlo algorithm can be used for both, 3D and IMRT/VMAT planning, with higher accuracy than CCC algorithm.
• The same 17 field with 100MU were delivered, with a maximum deviation of ±2.2% in case of 6MV energy.
• 10MV photon beams show good agreement with TPS measurements, with a maximum deviation of ±1.7%.
A set of 7 static and intensity modulated radiotherapy fields were used with the aim to verify Multi-Leaf Collimator (MLC) Agility parameter.

- PTW Octavius 4D system with 1500 detector array were used.
- All measured fields were analyzed using Gamma criteria 3mm distance to agreement (DTA) and 3% dose difference.
- Minimum requirement for passing the gamma analysis is 95% of the voxels should meet the criteria.
- All fields shows good agreement with results higher than 95%.
Conclusions

- The beam modeling was verified using a homogeneous phantom for point dose measurements, post modelling MLC parameters and patient QA plans.
- All plan parameters pass the gamma criteria with an average percentage higher than 95%.
- The 8 LINACS involved in this study are beam matched, therefore patient interchange is possible without replanning.