

Lecture

TERNARY ION-ASSOCIATION COMPLEXES BETWEEN THE IRON(III) WITH 4-(2-THIAZOLYLAZO)RESORCINOL AND SOME TETRAZOLIUM CATIONS

GALYA TONCHEVA¹, PETIA RACHEVA², NIKOLINA MILCHEVA², VIDKA DIVAROVA², NICOLE PARAPANOVA, KIRIL GAVAZOV²

- ¹ PLOVDIV UNIVERSITY "PAISII HILENDARSKI", PLOVDIV, BULGARIA
- ² MEDICAL UNIVERSITY OF PLOVDIV, PLOVDIV, BULGARIA

Iron characterization

- Iron (Fe) silvery-gray, malleable metal with a shiny surface that oxidizes easily.
- The pure iron crystals are soft (softer than Al).
- Good conductor of electricity and heat, pronounced magnetic properties;
- High chemical reactivity;
- Forms compounds mostly in two oxidation states Fe³⁺ and Fe²⁺;
- Specific properties and its alloys make iron "metal №1" in importance for humans;
- Often used iron-carbon alloys: steel (up to 2.14% C); cast iron (more than 2.14% C), as well as stainless (alloyed) steel with alloying metals (Cr, Mn, Ni and etc.).

Iron occurrence

- Iron one of the most common elements in the solar system, especially on the planets like the Earth.
- Much of the iron on Earth is found in the core of the planet.
- The **Earth's core** is believed to largely be composed of **iron (80%)**, along with **nickel** (20%) and one or more light elements.

Terms concerning iron intake

The WHO and European Commission's Directorate-General for Health and Food Safety introduces.

- Recommended Dietary Allowances (RDAs)
- for adults 20-50 year 8 mg/day for males;
- for adults 20-50 year 18 mg/day for females.
- Tolerable upper intake level (UL)
- for adults 14-70 year 45 mg/day.

The body of an adult contains about 3 - 4 g of iron (about 0.005%), of which only about 3.5 mg is in the blood plasma.

Iron toxicity

- Excess iron can enter the body along with rusty tap water (through cast iron pipes).
- The iron content in water more than 1-2 mg/L significantly impairs its organoleptic properties. Such water causes allergic reactions in humans.
- The maximum concentration limit for iron in water is 0.3 mg/L.
- Iron overdose stimulates the production of free radicals, inhibits the body's antioxidant system, and probably contributes to the development of atherosclerosis;

Excessive accumulation of iron in the body is toxic.

Iron in analytical techniques

Methods involving spectrophotometry

- simple and low-cost;
- can be easily combined with procedures for preliminary separation and concentration;
- can be easily combined with cloud point extraction;
- can be easily combined with liquid-liquid extraction.

The present work aims at to study:

- water-chloroform extraction-chromogenic system for iron(III);
- Fe(III) 4-(2-thiazolylazo)resorcinol (TAR) tetrazolium salts(TZS)

Reagents and apparatus

- . 4-(2-thiazolylazo)resorcinol (TAR) a well-known analytical reagent;
- tetrazolium salts (TZS) has been used in microbiology and analytical chemistry.

Reagents and apparatus

- Stock solution of Fe^{III} (1 mg dm⁻³; pH ~2) prepared by dissolving 8.6350 g of FeNH₄(SO₄)₂.12H₂O (99.1%; Reanal, Hungry) in water containing 5 cm³ of conc. H₂SO₄. Working solutions (50 μg cm⁻³) were prepared every day by suitable dilution of the stock solution with 0.01 mol dm⁻³ H₂SO₄.
- 4-(2-thiazolylazo)resorcinol (TAR) (Sigma-Aldrich Chemie GmbH (Schnelldorf, Germany))
 aqueous solutions with concentrations of 2×10⁻³ mol dm⁻³ were used.
- tetrazolium salts (TZS) the concentrations were 2×10⁻³ mol dm⁻³ (TV and INT), 3×10⁻³ mol dm⁻³ (for MTT), and 4×10⁻³ mol dm⁻³ (for TTC).
- The acidity of the aqueous medium was set by the addition of buffer solution, prepared by mixing 2.0 mol dm⁻³ aqueous solutions of CH₃COOH and ammonia.
- Absorbance measurements were performed by using a Camspec M508 and a Ultrospec3300 pro UV-Vis spectrophotometers (UK).

Results and Discussion

- 1. Liquid—liquid extraction—spectrophotometric optimization
- 1.1. Absorption spectra of complexes in chloroform

Figure 1. Absorption spectra of the ternary complexes (curves 1-4; $C_{Fe(III)}$ =2.24×10⁻⁵ mol dm⁻³) and blank samples (curves 1'-4') in chloroform at the optimum extraction conditions.

- TTC; - MTT; - TV; - INT.

The absorption spectra show that several complexes are formed in the system.

Iron(III) —TAR— TZS

1.2. Effect of pH on the extraction

Figure 2. Absorbance of the ternary Fe-TAR-TZS complexes (curves 1-4; $C_{Fe(III)}$ =2.24×10⁻⁵ mol dm⁻³) and the blank samples (curves 1'-4') in chloroform vs. pH of the aqueous phase. (1, 1') C_{TAR} =3.0×10⁻⁴ mol dm⁻³, C_{TTC} =8.0×10⁻⁴ mol dm⁻³, λ =615 nm; (2, 2') C_{TAR} =2.0×10⁻⁴ mol dm⁻³, C_{MTT} =3.0×10⁻⁴ mol dm⁻³, λ =620 nm; (3, 3') C_{TAR} =2.0×10⁻⁴ mol dm⁻³, C_{TV} =2.4×10⁻⁴ mol dm⁻³, λ =620 nm; (4, 4') C_{TAR} =2.0×10⁻⁴ mol dm⁻³, C_{INT} =2.6×10⁻⁴ mol dm⁻³, λ =620 nm.

Absorbance is maximal in precisely defined ranges according to the complex.

1.3. Effect of the reagents concentration

1.400 1.200 1.000 Absorbance 0.800 0.600 ■ 1. Fe-TAR-TTC 2. Fe-TAR-MTT 0.400 ▲ 3. Fe-TAR-TV 0.200 4. Fe-TAR-INT 0.000 0.0002 0.0004 0.0006 0.0008 CTZS, mol L-1

Figure 4. Absorbance of the extracted Fe-TAR-TZS complexes vs. concentration of the TAR plots; $C_{Fe(III)}$ =2.24×10⁻⁶ mol dm⁻³. (1) C_{TTC} =6.0×10⁻⁴ mol dm⁻³, λ =615 nm; (2) C_{MTT} =3.0×10⁻⁴ mol dm⁻³, λ =620 nm; (3) C_{TV} =2.4×10⁻⁴ mol dm⁻³, λ =620 nm; (4) C_{INT} =2.6×10⁻⁴ mol dm⁻³, λ =620 nm.

Figure 5. Absorbance of the extracted Fe-TAR-TZS complexes vs. concentration of the TZS plots; $C_{Fe(III)}$ =2.24×10⁻⁶ mol dm⁻³. (1) C_{TAR} =3.0×10⁻⁴ mol dm⁻³, λ=615 nm; (2) C_{TAR} =1.8×10⁻⁴ mol dm⁻³, λ=620 nm; (3) C_{TAR} =2.0×10⁻⁴ mol dm⁻³, λ=620 nm; (4) C_{TAR} =2.0×10⁻⁴ mol dm⁻³, λ=620 nm.

Extraction system	λ/nm	pН	C _{TAR} /mol dm ⁻³	C _{TZS} /mol dm ⁻³	Extaction
					time/min
Fe(III)-TAR-TTC	615	5.5-6.6	(2.0-3.0)×10 ⁻⁴	(4.0-8.0)×10 ⁻⁴	1-2
Fe(III)-TAR-MTT	620	6.0-6.6	(1.6-2.0)×10 ⁻⁴	(1.8-3.0)×10 ⁻⁴	1-2
Fe(III)-TAR-TV	620	6.5-7.2	(1.6-2.0)×10 ⁻⁴	(1.2-2.4)×10 ⁻⁴	1-2
Fe(III)-TAR-INT	620	6.3-6.5	(1.8-2.0)×10 ⁻⁴	(2.6-2.8)×10 ⁻⁴	1-2

Table 1. LLE-spectrophotometric optimization of the **Fe^{III}_TAR_TZS**_water_chloroform system. The volume of the organic phase was 10 cm³.

2. Molar Ratios

Extraction system	Squared correlation coefficient values (R2)			
	corresponding to molar ratios of 1, 2 and 3			
	TAR:Fe	TZS:Fe		
	0.9879 (n=1) ^a	0.9676 (n=1) ^e		
Fe(III)-TAR-TTC-water-chloroform	0.9939 (n=2) ^a	0.9994 (n=2) ^e		
	0.9594 (n=3) ^a	0.9817 (n=3)e		
	0.9888 (n=1) ^b	0.9351 (n=1) ^f		
Fe(III)-TAR-MTT-water-chloroform	0.9914 (n=2) ^b	0.9862 (n=2) ^f		
	0.9793 (n=3)b	0.9643 (n=3) ^f		
	0.9867 (n=1)°	0.9757 (n=1) ^g		
Fe(III)-TAR-TV-water-chloroform	0.9955 (n=2)°	0.9963 (n=2) ^g		
	0.9863 (n=3)°	0.9832 (n=3) ^g		
	0.9670 (n=1) ^d	0.9653 (n=1) ^h		
Fe(III)-TAR-INT-water-chloroform	0.9865 (n=2) ^d	0.9929 (n=2) ^h		
	0.9657 (n=3) ^d	0.9419 (n=3) ^h		

```
a – C_{TAR} varies from 6.0\times10^{-5} mol dm<sup>-3</sup> to 2.0\times10^{-4} mol dm<sup>-3</sup>; b – C_{TAR} varies from 8.0\times10^{-5} mol dm<sup>-3</sup> to 1.8\times10^{-4} mol dm<sup>-3</sup>; c – C_{TAR} varies from 8.0\times10^{-5} mol dm<sup>-3</sup> to 1.6\times10^{-4} mol dm<sup>-3</sup>; d – C_{TAR} varies from 6.0\times10^{-5} mol dm<sup>-3</sup> to 1.6\times10^{-4} mol dm<sup>-3</sup>; e – C_{TTC} varies from 8.0\times10^{-5} mol dm<sup>-3</sup> to 3.6\times10^{-4} mol dm<sup>-3</sup>; f – C_{MTT} varies from 3.9\times10^{-5} mol dm<sup>-3</sup> to 2.4\times10^{-4} mol dm<sup>-3</sup>; g – C_{TV} varies from 3.6\times10^{-5} mol dm<sup>-3</sup> to 9.6\times10^{-5} mol dm<sup>-3</sup>; h – C_{INT} varies from 3.0\times10^{-5} mol dm<sup>-3</sup> to 2.2\times10^{-4} mol dm<sup>-3</sup>; *– At reagent concentrations lower than the specified (references a, b, c, d, e, f, g, and h) the determined squared correlation coefficient values for n=1 were closest to 1.
```

Table 2. Determination of the TAR-to-Fe and TZS-to-Fe molar ratios by the stright-line method of Asmus

Iron(III) — TAR — TZS

3. Composition of the Complexes

The saturation curves presented in Figure 3 and Figure 4 allowed determination of the TAR-to-Fe and TZS-to-Fe molar ratios in the ternary complexes. The mobile equilibrium method [46], which is appropriate to distinguish mononuclear species from polynuclear species, and the straight-line method of Asmus [47] (Table 3) were used. The results led to the conclusion that mononuclear species are formed in all systems; the molar Fe:TAR:TZS ratio in these species is 1:2:2 if $C_{TAR} > (6.0-8.0) \times 10^{-5}$ mol dm⁻³ and CTZS>(3.0-8.0)×10⁻⁵ mol dm⁻³.

Extraction system	Log β	Log K _D	Log K _{ex}	R%
Fe(III)-TAR-TTC-H ₂ O-chloroform	9.08±0.08a, 9.0±0.7b	1.57±0.01°	10.65±0.09e	97.41±0.05 ^f
Fe(III)-TAR-MTT-H ₂ O-chloroform	9.44±0.08 ^a , 9.5±0.6 ^b	1.45±0.01 ^d	10.89±0.09e	96.58±0.05 ^f
Fe(III)-TAR-TV-H ₂ O-chloroform	9.8±0.2a, 9.7±1.3b	1.53±0.01 ^d	11.3±0.2e	97.14±0.09 ^f
Fe(III)-TAR-INT-H ₂ O-chloroform	9.2±0.1 ^a , 9.3±0.2 ^b	1.011±0.002 ^d	10.2±0.1e	91.12±0.04 ^f

a – Calculated by the Holme-Langmihr method b – Calculated by the Mobile equilibrium method c – Calculated by the equation $K_D = \Delta A_1/(\Delta A_x - \Delta A_1)$; x=2 d – Calculated by the equation $K_D = \Delta A_1/(\Delta A_x - \Delta A_1)$; x=3 e – Calculated by the equation $K_{ex} = K_D \times \beta$, where β is the value obtained by the Holme-Langmihr method f – Calculated by the equation $R\% = 100 \times K_D/(K_D + 1)$

4. Suggested Reaction Scheme and General Formula of the Ternary Complexes

The obtained Fe:TAR:TZS molar ratios (1:2:2 at the optimum extraction conditions) and the ability of TZS to form cations (TZ+) in aqueous medium suppose a complex formation according to one of the following two schemes:

Scheme 1

Fe^{|||} + 2HTAR⁻ + e⁻
$$\leftrightarrow$$
 [Fe^{||}(TAR)₂]²⁻ + 2H⁺ (1.1)
[Fe^{||}(TAR)₂]²⁻ + 2TZ⁺ \leftrightarrow (TZ⁺)₂[Fe^{||}(TAR)₂]

Scheme 2

$$Fe^{|||} + 2HTAR^{-} + H_{2}O \leftrightarrow [Fe^{|||}(OH)(TAR)_{2}]^{2-} + 3H^{+}$$
 (2.1)

$$[Fe^{|||}(OH)(TAR)_2]^{2-} + 2TZ^+ \leftrightarrow (TZ^+)_2[Fe^{|||}(OH)(TAR)_2]$$
 (2.2)

Scheme 1 is better supported by the experimental facts (high molar absorptivity, stable results, lack of evidence for aggregation in the organic phase) and by the literature concerning iron-TAR and/or iron-PAR complexes.

Iron(III) –TAR – TSZ

5. Beer's Law and Analytical Characteristics

Extraction system	Fe(III)-TAR- TTC-H ₂ O-	Fe(III)-TAR- MTT-H ₂ O-	Fe(III)-TAR- TV-H ₂ O-	Fe(III)-TAR- INT-H ₂ O-
Analytical characteristics	CHCI ₃	CHCI ₃	CHCI ₃	CHCI ₃
Molar absorptivity (ε)/L mol ⁻¹ cm ⁻¹	5.0×10 ⁴	5.13×10 ⁴	5.3×10 ⁴	4.5×10 ⁴
Sandell's sensitivity (SS)/ ng cm ⁻²	1.12	1.09	1.06	1.25
Adherence to Beer's law/ µg cm ⁻³	up to 1.3	up to 1.5	up to 1.5	up to 1.3
Squared correlation coefficient (R ²)	0.9986	0.9997	0.9979	0.9977
Limit of detection (LOD)/ µg cm ⁻³	0.049	0.031	0.073	0.070
Limit of quantification (LOQ)/ µg cm ⁻³	0.16	0.11	0.25	0.23
Absorbance of the blank at λ_{opt} (in	0.014±0.001	0.029±0.001	0.023±0.001	0.020±0.001
parenthesis)	(615 nm)	(620 nm)	(620 nm)	(620 nm)

Table 4. Characteristics concerning the application of the ion-association complexes for extractive-spectrophotometric determination of iron(III)

5. Beer's Law and Analytical Characteristics

The adherence to Beer's law for each Fe(III)–TAR–TZS system was examined under the optimum extraction-spectro-photometric conditions (Table 2). Calculated molar absorptivities (ϵ) are listed in Table 4, along with some important characteristics concerning the application of the ternary complexes for extraction-spectrophotometric determination of iron.

The couples TZS–TAR ensure high sensitivity of determination. In this criterion, they are better than many reagents used in similar systems: TAR (ϵ_{730} =2.9×10⁴ dm³ mol⁻¹ cm⁻¹; aqueous medium) [21], TZS { ϵ_{480} =2.2×10³ dm³ mol⁻¹ cm⁻¹ (TZS=TTC), ϵ_{555} =5.3×10³ dm³ mol⁻¹ cm⁻¹ (TZS=MTT), ϵ_{480} =1.1×10⁴ dm³ mol⁻¹ cm⁻¹ (TZS=INT), ϵ_{500} =2.2×10³ dm³ mol⁻¹ cm⁻¹ (TZS=Neotetrazolium chloride); methyl isobutyl ketone extraction} [37], 4-nitrocatechol–TTC (ϵ_{435} =2.7×10⁴ dm³ mol⁻¹ cm⁻¹; chloroform extraction) [20], PAR–zephiramine (ϵ_{522} =(4.0-4.5)×10⁴ dm³ mol⁻¹ cm⁻¹; chloroform extraction) [3-5], 4-(4-methyl-2-thiazolylazo)resorcinol (ϵ_{735} =2.49×10⁴ dm³ mol⁻¹ cm⁻¹; aqueous medium) [28], 2-(2-thiazolylazo)-5-dimethylaminophenol (ϵ_{760} =2.70×10⁴ dm³ mol⁻¹ cm⁻¹; chloroform extraction) [54], 2-(2-thiazolylazo)-4-methylphenol (ϵ_{762} =1.37×10⁴ dm³ mol⁻¹ cm⁻¹; chloroform extraction) [55], 2-(4,5-dimethyl-2-thiazolylazo)-4,6-dimethylphenol (ϵ_{773} =1.38×10⁴ dm³ mol⁻¹ cm⁻¹; chloroform extraction) [56], and 1-(2-thiazolylazo)-2-naphthol { ϵ_{787} =1.83×10⁴ dm³ mol⁻¹ cm⁻¹ (aqueous medium) [57] or ϵ_{786} =1.89×10⁴ dm³ mol⁻¹ cm⁻¹ (chloroform extraction) [55]}.

5. Conclusions

- 1. Fe(III) readily forms chloroform-extractable ternary ion-association complexes with TAR and TZSs. The anionic part of these complexes ensures intense brown coloration and the bulkiness of the cationic part (TZ+) guarantees their good hydrophobic properties.
- 2. The complexes have a composition of 1:2:2 (Fe:TAR:TZS) under the optimum extraction conditions. The following general formula was suggested: $(TZ^+)_2[Fe^{II}(TAR)_2]$; in this formula TAR is doubly deprotonated (TAR²⁻) and iron is in its 2+ oxidation state.
- 3. The key equilibrium constants and analytical characteristics were determined. Linear relationships appear to exist between the logarithm of the molecular mass of the tetrazolium cation (Log M_{TZ} +) and some of the constants (Log β , Log K_{ex} , and $\epsilon_{\lambda(opt)}$) for the complexes with TZ^+ which do not contain NO_2 groups (i.e. TZ^+ = TT^+ , MTT^+ and TV^+).
- 4. The poorer extraction-spectrophotometric performance of $(INT^+)_2[Fe(TAR)_2]$ can be explained with a negative influence of the nitro group.

Thank you for your attention